
1

Bi-Lingual Programming:

C and Python for Modern Coders

Dr. B. Swapna

Mrs. A. Maheswari

Mrs. Chinchu Nair

Mr. R. Balaji

www.jpc.in.net

2

Bi-Lingual Programming: C and Python for Modern Coders

Author:

Dr. B. Swapna

Mrs. A. Maheswari

Mrs. Chinchu Nair

Mr. R. Balaji

@ All rights reserved with the publisher.

First Published: June 2023

ISBN: 978-93-91303-63-1

DOI: https://doi.org/10.47715/JPC.B.978-93-91303-63-1

Pages: 122 (Front pages 16 & Inner pages 106)

Price: 300/-

Publisher:

Jupiter Publications Consortium

22/102, Second Street, Virugambakkam

Chennai, Tamil Nadu, India.

Website: www.jpc.in.net

Email: director@jpc.in.net

Imprint:

Magestic Technology Solutions (P) Ltd.

Chennai, Tamil Nadu, India.

3

TITLE VERSO

Title of the Book:

Bi-Lingual Programming: C and Python for Modern Coders

Author's Name:

Dr. B. Swapna

Mrs. A. Maheswari

Mrs. Chinchu Nair

Mr. R. Balaji

Published By:

Jupiter Publications Consortium

Publisher's Address:

22/102, Second Street, Venkatesa Nagar, Virugambakkam

Chennai, Tamil Nadu – 600 092

Printer's Details:

Magestic Technology Solutions (P) Ltd.

Edition Details: First Edition

ISBN: 978-93-91303-63-1

Copyright: @ Magestic Technology Solutions (P) Ltd.

4

COPYRIGHT

Jupiter Publications Consortium

22/102, Second Street, Virugambakkam

Chennai 600 092. Tamil Nadu. India

@ 2023, Jupiter Publications Consortium

Imprint Magestic Technology Solutions (P) Ltd

Printed on acid-free paper

International Standard Book Number (ISBN): 978-93-91303-63-1 (Paperback)

Digital Object Identifier (DOI): 10.47715/JPC.B.978-93-91303-63-1

This book provides information obtained from reliable and authoritative

sources. The author and publisher have made reasonable attempts to publish

accurate facts and information, but they cannot be held accountable for any

content's accuracy or usage. The writers and publishers have endeavoured to

track down the copyright holders of every content copied in this book and

regret if permission to publish in this format was not acquired. Please notify us

through email if any copyright-protected work has not been recognised so that

we may make the necessary corrections in future reprints. No portion of this

book may be reprinted, reproduced, transmitted, or used in any form by any

electronic, mechanical, or other means, now known or hereafter developed,

including photocopying, microfilming, and recording, or in any information

storage or retrieval system, without the publisher's written permission.

Trademark Notice: Product or corporate names may be trademarks or

registered trademarks and are used only for identification and explanation

without intent to infringe.

Visit the Jupiter Publications Consortium Web site at

http://www.jpc.in.net

5

DEDICATION

Er. A C S. ARUNKUMAR

B.Tech (Hons)., LMISTE., MIET.,(UK)., LMCSI.,

President

Dr. M. G. R. Educational and Research Institute

Chennai, Tamil Nadu, India.

- We take immense pride and heartfelt reverence in dedicating this book

to Er. A C S. Arunkumar, B.Tech (Hons)., LMISTE., MIET.,(UK)., LMCSI.,

who holds the esteemed position of President at our illustrious Dr. M. G. R.

Educational and Research Institute, located in the culturally vibrant city of

Chennai, Tamil Nadu, India.

Our President's unwavering devotion to cultivating academic excellence

and fostering the expansion of knowledge is a testament to his global vision.

His educational philosophy not only stimulates us but is a beacon that has

helped light the path towards academic and personal growth for countless

students, leaving an indelible impact on the landscape of academia.

Our gratitude for our President's leadership is profound, as his guidance

persistently propels us to strive for pinnacle of excellence in all aspects of our

6

pursuits. It is more than an honour; it is indeed a privilege to dedicate this book

to such a luminary a tangible expression of our respect, admiration, and

appreciation.

We extend our deepest gratitude to you, sir, for your extraordinary

contributions to the field of education, and for ceaselessly inspiring us all with

your visionary leadership. Your legacy, like this book, shall serve as a beacon

of inspiration for future generations.

Dr. B. Swapna

Mrs. A. Maheswari

Mrs. Chinchu Nair

Mr. R. Balaji

(Authors)

7

ACKNOWLEDGEMENT

We express our profound gratitude and reverence to the Almighty

whose abundant grace has been our guiding light, leading us to the successful

completion of this book.

We are very much grateful to our esteemed Founder and Chancellor

Thiru. A.C. Shanmugam B.A, B.L, FRCPS (Glasgow). His unwavering support

and inspiration have been invaluable to our efforts. We also convey our deepest

gratitude to our young dynamic President Er. A.C.S. Arun Kumar B.Tech

(Hons), LMISTE, MIET (UK), LMCSI, whose encouragement and assistance

have been instrumental in the successful publication of this book.

We extend our earnest thanks to Vice Chancellor, Dr. S. Geethalakshmi,

Pro Vice Chancellor Dr. S. Ravichandran, Registrar Dr. C. B. Palanivelu,

Provost Dr. G. Gopalakrishnan, and Prof. Dr. D. Viswanathan, Rector -

Research and Development. Their perpetual inspiration, motivation, and

encouragement have been of immense significance to our endeavour. Special

acknowledgements are due to Joint Registrar (FY E&T) Dr. N. S. Shubhashree,

Dean (E&T) Dr. N. Ethiraj and HOD/CSE Dr. S. Geetha. Their unwavering

motivation, encouragement, and support have been pivotal in transforming our

hard work into a successful outcome.

We seize this opportunity to express our thanks to all our Joint

Registrars, Deans, and Heads of various departments for their unflinching

support. We extend our thanks to the entire teaching and non-teaching staff

and our students, whose constant support and encouragement have played a

crucial role in our journey.

- AUTHORS

8

This Page Intentionally Left Blank

9

PREFACE

In the dazzling cosmos of software development and programming, there are

languages that define the fundamental stratum and languages that pave the

way for future innovations. The synchronicity of understanding both types of

languages equip one with a comprehensive understanding of the coding

universe. "Bi-Lingual Programming: C and Python for Modern Coders" is a

meticulously designed endeavour that seeks to unravel the intricacies of these

two vital languages – the stalwart C, and the dynamic Python.

C, the timeless classic, forms the bedrock of programming. It is a language that

has been shaping the digital world for decades, its low-level capabilities

making it a powerful tool in the right hands. Python, on the other hand,

represents the ever-evolving landscape of modern programming. Its flexibility,

ease of learning, and wide range of applications makes it one of the most

popular languages among new and seasoned programmers alike.

This book is a collaborative endeavour of Dr. B. Swapna, Mrs. A. Maheswari,

Mrs. Chinchu Nair, and Mr. R. Balaji. It brings together our diverse experiences

and deep-rooted passion for coding, pedagogy, and knowledge dissemination.

The aim is to facilitate an enriching learning experience that explores these

languages in detail, elucidating their fundamental aspects, advanced

capabilities, and unique applications.

"Bi-Lingual Programming: C and Python for Modern Coders" presents a well-

structured, topic-wise layout, making it easy to follow and digest. The first two

units delve into the core of C programming, exploring everything from its basic

character sets and variables to intricate concepts like structures and binary I/O

functions. Unit III ventures into the realm of Python, elucidating its basic

concepts, data types, modularity, and I/O functionality, among others.

10

The journey from C's preciseness and complexity to Python's simplicity and

versatility is intentionally crafted to provide learners with a panoramic

understanding of both the languages. We have taken great pains to maintain a

smooth and cohesive transition between concepts, punctuating the text with

examples, exercises, and snippets to enhance comprehension and retention.

Whether you're a beginner starting your coding journey or an experienced

coder aiming to expand your skills, this book promises to be a reliable

companion. It's our hope that readers will not only gain knowledge from it, but

also cultivate a deep appreciation for programming languages and their pivotal

role in our increasingly digital world.

We, the authors, eagerly invite you to embark on this enriching journey of bi-

lingual programming with us. Here's to unlocking a new realm of coding

prowess, together!

Dr. B. Swapna

Mrs. A. Maheswari

Mrs. Chinchu Nair

Mr. R. Balaji

11

ABSTRACT

In the rapidly evolving landscape of software development, the understanding

and effective utilization of programming languages serve as critical skills for

modern coders. This book, "Bi-Lingual Programming: C and Python for

Modern Coders", presents an in-depth exploration of two highly influential

programming languages: the fundamental and efficient C, and the versatile and

intuitive Python.

Our comprehensive guide begins by delving into the structure and intricacies

of C programming, from its basic syntax and data types to more complex

constructs like pointers, structures, and binary I/O functions. The focus then

shifts to the user-friendly Python, uncovering its historical evolution, basic

concepts, structured data types, and control statements, before advancing to its

unique modularity and I/O functionality.

Both languages are approached with a balanced blend of theoretical insights

and practical applications, ensuring an effective learning experience for

beginners and seasoned programmers alike. By combining C's foundation-

laying strengths with Python's flexibility and simplicity, the book provides

readers with a thorough understanding of the programming spectrum, thereby

enhancing their coding proficiency.

Keywords: Programming Languages, C Programming, Python, Binary I/O

Functions, Data Types, Control Statements, Modularity, I/O Functionality,

Software Development, Coding Proficiency.

12

This Page Intentionally Left Blank

13

PROLOGUE

The march of technology is relentless, and the fields of software development

and data science move at a pace that can be dizzying. Yet, amidst this rapid

evolution, programming languages remain our steadfast tools, our translators

between human thought and digital action. Among the plethora of languages

that have been developed over the years, two have consistently demonstrated

their value and versatility: C and Python. This book, "Bi-Lingual Programming:

C and Python for Modern Coders", is a testament to the timelessness and

adaptability of these two languages.

C, a language born in the late 1960s, was revolutionary in its day, providing

programmers with an unprecedented blend of high-level functionality and

low-level access. Over the years, it has become a cornerstone in the world of

programming, its principles serving as a foundation for numerous modern

languages. In this volume, we pay homage to C's impact and delve into its

fundamental constructs and nuanced features.

Python, on the other hand, represents a newer generation of programming

languages. With its simple yet expressive syntax, Python has garnered a

reputation for enabling quick development and being an excellent tool for

beginners. However, these traits do not limit its power; Python is a force to be

reckoned with in areas as diverse as web development, data analysis, artificial

intelligence, and more.

The journey between these two languages is a passage through time, a voyage

that connects the early days of programming to its future. This book serves as

your guide on this journey, offering a comprehensive look at each language and

the programming principles they embody.

14

This prologue, though brief, is a glimpse into the worlds we will traverse.

Whether you are a seasoned programmer looking to expand your knowledge

or a beginner starting from scratch, we hope this book will serve as a helpful

companion, illuminating the path forward as you delve into the enduring

language of C and the versatile realm of Python.

As we embark on this exploration, we are reminded of a fundamental truth in

technology: while languages may come and go, the principles they embody

endure. Understanding these principles is the key to becoming not just a coder,

but a master of the craft. It is our hope that "Bi-Lingual Programming: C and

Python for Modern Coders" will be your gateway to this mastery.

15

INTRODUCTION

In the grand concert of technology and digital innovation, programming

languages play the role of pivotal instruments, each contributing its unique

sound to the harmonious symphony of software development. Among the

many instruments, two have always been at the forefront, either for their

foundational importance or for their flexibility in adapting to changing

paradigms - the stalwart C and the innovative Python. "Bi-Lingual

Programming: C and Python for Modern Coders" is a comprehensive guide

that delves deep into these two significant languages, elucidating their nuances

and applications for a diverse audience of readers.

The language of C, revered for its efficiency and control, has been the

foundation upon which many current high-level languages are built. It is often

likened to the mother of programming languages, the understanding of which

provides a sturdy grounding for any coder. In this book, we explore the basic

character sets, identifiers, and data types in C, before gradually transitioning

into more complex topics like operators, looping statements, arrays, functions,

pointers, and structures. The structured format and thorough analysis of C will

help beginners establish a strong programming base and provide a refresher

for experienced programmers looking to revisit the basics.

Contrastingly, Python, with its emphasis on code readability and syntax

simplicity, has swiftly emerged as the go-to language for quick prototyping,

data analysis, machine learning, and web development. It represents the

dynamic and evolving landscape of modern programming, offering a high

degree of flexibility and wide application range. The third unit of the book is

dedicated entirely to Python, starting with its history and basic concepts,

moving on to structured data types, control statements, exception handling,

and program flow modification. We further delve into modularity principles,

16

callable objects, and I/O functionality in Python, providing readers with a well-

rounded understanding of this versatile language.

Our objective in crafting this book is not merely to impart knowledge about C

and Python but to foster an understanding of the broader programming

landscape. The book balances theoretical concepts with practical applications,

enhancing learning through numerous examples, exercises, and program

snippets. The seamless transition from one language to another offers a unique

perspective and will equip readers with a bi-lingual programming competency.

Whether you're a novice just embarking on your coding journey, a hobbyist

looking to expand your coding horizons, or a seasoned programmer aiming to

brush up your basics and update your knowledge, this book is designed to meet

your needs. The comprehensive and detailed approach used in "Bi-Lingual

Programming: C and Python for Modern Coders" ensures that it serves as a

valuable resource in your programming journey.

Welcome to a bi-lingual exploration of the fascinating world of coding, where

tradition meets innovation, providing a solid foundation for the programmers

of today and tomorrow.

Dr. B. Swapna

Mrs. A. Maheswari

Mrs. Chinchu Nair

Mr. R. Balaji

1

Table of Contents

UNIT – 1 INTRODUCTION .. 7

Key Advantages of Learning C Programming: .. 7

Applications of C ... 7

C Character Set .. 7

Alphabets .. 8

Identifiers .. 8

Rules for naming identifiers ... 8

Keywords .. 8

Data Types .. 9

Variables ... 11

Variable Declaration Syntax: .. 11

Constants .. 11

Defining Constants .. 11

C Program Structure ... 12

UNIT II - EXPRESSION AND STATEMENT.. 15

Operators In C.. 15

Arithmetic Operators .. 15

Relational Operators ... 16

Logical Operators .. 17

Bitwise Operators .. 17

Assignment Operators .. 19

2

Operators Precedence in C ... 21

Looping Statements... 22

Loop Control Statements .. 24

Decision Making Statements ... 25

The ? : Operator/Conditional Statement... 28

Arrays In C ... 29

Declaring Arrays .. 29

Initializing Arrays .. 30

Accessing Array Elements .. 30

Multi-dimensional arrays ... 31

Accessing Two-Dimensional Array Elements ... 33

Functions In C .. 34

Defining a Function ... 34

Function Declarations ... 36

Calling a Function .. 36

Function Arguments ... 37

Call by value ... 38

Call by reference .. 40

Pointers In C ... 42

What are Pointers? ... 42

How to Use Pointers? .. 43

NULL Pointers ... 44

Structures in C ... 45

Defining a Structure .. 45

3

Accessing Structure Members.. 46

Structures as Function Arguments .. 48

Bit Fields .. 51

Strings In C ... 52

Opening Files.. 55

Binary I/O Functions ... 58

UNIT – III PYTHON ... 67

Python History ... 67

Basic Concepts of Python ... 70

Identifiers .. 75

Data Types: ... 80

Variables: ... 81

Comparison Operators: .. 82

Structured Data Types: ... 82

Assignment Statements .. 83

Control Statements .. 86

if-else statement: .. 87

for loop: ... 87

nested loops: ... 89

else statement with loops: .. 90

try-except-else-finally statement: .. 90

assert statement: ... 90

Program Flow Modification ... 91

Conditional Statements: .. 91

4

Control Statements: ... 92

break: ... 92

continue: .. 92

Exception Handling: .. 93

Example use of "continue": ... 93

Example use of "break": .. 93

Case Structure in Python .. 94

if-elif-else ladder: ... 94

Dictionary-based approach: ... 95

Using the match-case statement (Python 3.10+): ... 96

Modularity .. 96

Modules: .. 97

Packages: ... 97

Functions: .. 97

Classes: .. 97

Libraries and Frameworks: .. 97

Modularity Principles: .. 98

Callable Objects ... 98

User-Defined Functions: ... 98

Classes: .. 98

Invocation of Callable Objects: .. 99

Default and Keyword Parameters: .. 99

IO Functionality: .. 100

Console I/O: .. 100

5

File I/O: .. 101

Reading from a File: .. 101

Writing to a File: .. 101

File Position and Seeking: ... 101

Closing a File: ... 102

Python Programs with Output .. 102

6

This Page is intentionally Left Blank.

7

UNIT – 1 INTRODUCTION

Fundamentals, C Character set, Identifiers and Keywords, Data Types,

Variables and Constants, Structure of a C Program, Executing a C Program.

C programming is a general-purpose, procedural, imperative computer

programming language developed in 1972 by Dennis M. Ritchie at the Bell

Telephone Laboratories to develop the UNIX operating system. C is the most

widely used computer language.

Key Advantages of Learning C Programming:

▪ Easy to learn

▪ Structured language

▪ It produces efficient programs

▪ It can handle low-level activities

▪ It can be compiled on a variety of computer platforms

Applications of C

o Operating Systems

o Language Compilers

o Assemblers

o Text Editors

o Print Spoolers

o Network Drivers

o Modern Programs

o Databases

o Language Interpreters

o Utilities

C Character Set

A character set is a set of alphabets, letters and some special characters that are

valid in C language.

8

Alphabets

Uppercase: A B C X Y Z

Lowercase: a b cx y z

C accepts both lowercase and uppercase alphabets as variables and functions.

Digits

0 1 2 3 4 5 6 7 8 9

Special Characters like !<> () & % # $ { } etc.

Identifiers

Identifiers are names for entities in a C program, such as variables, arrays,

functions, structures, unions and labels. An identifier can be composed only of

uppercase, lowercase letters, underscore and digits, but should start only with

an alphabet or an underscore.

Rules for naming identifiers

A valid identifier can have letters (both uppercase and lowercase letters), digits

and underscores.

The first letter of an identifier should be either a letter or an underscore.

You cannot use keywords as identifiers.

There is no rule on how long an identifier can be. However, you may run into

problems in some compilers if the identifier is longer than 31 characters.

No special characters or symbols are allowed.

Keywords

Keywords are predefined, reserved words used in programming that have

special meanings to the compiler. Keywords are part of the syntax and they

cannot be used as an identifier.

9

C Keywords

Auto double int struct

break else long switch

case enum register typedef

char extern return union

continue for signed void

do if static while

default goto sizeof volatile

Data Types

Data types in c refer to an extensive system used for declaring variables or

functions of different types. The type of a variable determines how much space

it occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows −

Sr.No. Types & Description

1 Basic Types

They are arithmetic types and are further classified into: (a) integer

types and (b) floating-point types.

2 Enumerated types

They are again arithmetic types and they are used to define

variables that can only assign certain discrete integer values

throughout the program.

3 The type void

The type specifier void indicates that no value is available.

4 Derived types

They include (a) Pointer types, (b) Array types, (c) Structure types,

(d) Union types and (e) Function types.

94

 print(x)

 x -= 1

In this example, the loop continues indefinitely with while True. However,

when x becomes 0, the break statement is encountered, and it terminates the

loop, immediately transferring the control to the next statement after the loop.

Example use of "pass":

while True:

 if x < 10:

 pass

 elif x == 10:

 # Do something with x

 print("x is 10")

 else:

 # Do something else with x

 print("x is greater than 10")

 break

In this example, the loop continues indefinitely with while True. When x is less

than 10, the pass statement is encountered, indicating that no action is needed

at that point. When x is equal to 10, the code block under the elif statement is

executed. When x is greater than 10, the code block under the else statement is

executed. The break statement is included to terminate the loop after one

iteration.

Case Structure in Python

In Python, there is no direct "case" or "switch" statement like in some other

programming languages. However, you can achieve similar functionality using

various techniques. Here are a few approaches to implement a case-like

structure in Python:

if-elif-else ladder:

One way to emulate a case structure is by using an if-elif-else ladder. You can

use multiple if-elif statements to check different conditions and execute

corresponding blocks of code.

95

Example:

x = 2

if x == 1:

 print("Case 1")

elif x == 2:

 print("Case 2")

elif x == 3:

 print("Case 3")

else:

 print("Default case")

In this example, each condition is checked using if-elif statements, and the

corresponding block of code is executed based on the condition that evaluates

to true.

Dictionary-based approach:

You can use a dictionary to map keys to functions or values. The keys represent

the cases, and the associated values can be functions or values to be executed

or returned.

Example:

def case_1():

 print("Case 1")

def case_2():

 print("Case 2")

def case_3():

 print("Case 3")

cases = {

 1: case_1,

 2: case_2,

 3: case_3

}

x = 2

if x in cases:

 cases[x]()

else:

96

 print("Default case")

In this example, functions case_1, case_2, and case_3 are defined, and a

dictionary cases is created to map the cases to their corresponding functions.

The value of x is used as the key to retrieve the corresponding function from

the dictionary and execute it.

Using the match-case statement (Python 3.10+):

Starting from Python 3.10, a new feature called "match-case" is introduced as a

more concise and expressive way to handle pattern matching. It allows you to

match values against specific patterns and execute corresponding code blocks.

Example:

x = 2

match x:

 case 1:

 print("Case 1")

 case 2:

 print("Case 2")

 case 3:

 print("Case 3")

 case _:

 print("Default case")

In this example, the match statement is used to match the value of x against

different cases. The code block under the matching case is executed, and if none

of the cases match, the _ case acts as the default case.

These are a few approaches to implement a case-like structure in Python. Each

technique has its advantages and can be used based on your specific

requirements and the version of Python you are working with.

Modularity

Modularity is a fundamental aspect of Python programming, allowing you to

break down your code into smaller, manageable modules. Python provides

several mechanisms to achieve modularity, which include:

97

Modules:

Python modules are files that contain Python code. They serve as a way to

organize related code and provide a means to reuse functionality across

different programs. Modules can be imported into other modules or scripts

using the import statement. By importing a module, you gain access to its

functions, classes, and variables.

Packages:

Packages are a way to organize related modules into a hierarchical directory

structure. A package is simply a directory that contains an __init__.py file,

indicating that it is a package. Packages allow for a more organized and

structured approach to modularity in larger projects. They can be nested to

create a hierarchy of modules.

Functions:

Functions are a way to encapsulate a block of code that performs a specific task.

By defining functions, you can break down your program logic into reusable

units. Functions help in achieving modularity by promoting code reuse,

separation of concerns, and encapsulation of functionality.

Classes:

Classes provide a blueprint for creating objects that have attributes (variables)

and methods (functions). They encapsulate related data and behavior into a

single entity. Classes are instrumental in achieving object-oriented modularity,

allowing for code reuse, encapsulation, and separation of concerns.

Libraries and Frameworks:

Python has an extensive standard library and a vast ecosystem of third-party

libraries and frameworks. These libraries and frameworks provide pre-built

modules and functions that you can leverage to achieve modularity in your

programs. They offer a wide range of functionality for various domains,

allowing you to focus on your specific problem without reinventing the wheel.

98

Modularity Principles:

Beyond the language constructs and features, adhering to modularity

principles is essential in Python programming. Following principles such as the

Single Responsibility Principle (SRP) and Separation of Concerns (SoC) can

guide you in structuring your code in a modular fashion.

By utilizing modules, packages, functions, and classes effectively, along with

the principles of modularity, you can create Python programs that are modular,

reusable, maintainable, and scalable. Modularity in Python promotes code

organization, separation of concerns, and collaboration among developers,

leading to cleaner and more efficient codebases.

Callable Objects

In Python, a callable object is any object that can be called as a function. This

includes user-defined functions, built-in functions, class objects, class instance

methods, and class instances. When a callable object is called, it is invoked with

a series of arguments (if any) and returns a value (unless an exception is raised).

User-Defined Functions:

User-defined functions are created using the def keyword, followed by the

function name, a list of arguments (optional), and a block of executable

statements. They can also include a return statement to specify the value to be

returned.

def demo_function(message):

 print(message)

 return 1

Classes:

Classes in Python can also be callable objects. They define a blueprint for

creating objects that have attributes and methods. Class methods are defined

within the class using the def keyword, just like user-defined functions. The

first argument of a class method is conventionally named self, which refers to

the instance of the class.

99

Example:

class MyClass:

 def __init__(self, width):

 self.width = width

 self.inputExpected = True

 def to_string(self):

 return "Input is expected " + str(self.inputExpected)

In the above example, MyClass is a class with an __init__ method (constructor)

and a to_string method. The self argument represents the instance of the class.

Invocation of Callable Objects:

When calling a callable object, the parameters are passed as arguments. The

callable object is invoked by using parentheses () after its name, followed by the

argument values. The return value of the callable object is the result of the call,

which includes None unless an exception is raised.

Example:

result = demo_function("Hello")

print(result) # Output: 1

obj = MyClass(10)

obj_str = obj.to_string()

print(obj_str) # Output: "Input is expected True"

In the above example, the demo_function and to_string methods are called by

using parentheses () and providing the required arguments.

Default and Keyword Parameters:

Python supports default parameters and keyword parameters. Default

parameters are values assigned to function or method arguments when they

are defined. Keyword parameters allow you to pass arguments using the

parameter name, which provides more clarity and flexibility in function calls.

Example:

def multiply(a, b=1):

 return a * b

result1 = multiply(5) # Uses default value for b

result2 = multiply(5, b=3) # Uses keyword parameter for b

100

In the above example, the multiply function has a default parameter b assigned

to 1. The function can be called without providing a value for b, in which case

it uses the default value. Alternatively, a keyword argument can be passed to

explicitly specify the value of b.

Callable objects in Python are versatile and allow you to encapsulate

functionality and perform operations by invoking them as functions. They

provide a flexible way to define reusable code and enable code organization

and encapsulation within classes and functions.

IO Functionality:

Input and output (IO) functionality is crucial in programming as it enables

communication between the program and the user or external data sources. In

Python, IO operations can be performed through console IO and file IO. Let's

explore each of them:

Console I/O:

Input:

Input from the console is accomplished using the raw_input() function (in

Python 2) or the input() function (in Python 3).

raw_input() takes an optional prompt as its parameter and waits for the user to

enter input. The entered value is returned as a string.

Example:

data = raw_input("Please enter something: ")

Output:

Output to the console is achieved using the print statement (in Python 2) or the

print() function (in Python 3).

print accepts one or more arguments and displays them as output. By default,

it adds a newline character after the last argument.

Example:

print("Hello, World!")

101

File I/O:

Opening a File:

File objects are created by using the open() function, which takes two

parameters: the filename and the mode.

The mode specifies the purpose of opening the file, such as reading, writing,

appending, or both reading and writing.

Example:

file = open("example.txt", "r")

Reading from a File:

File objects support various methods for reading data, such as read(), readline(),

and readlines().

read() reads the entire content of the file as a string or a specified number of

bytes.

readline() reads a single line from the file.

readlines() reads all lines of the file and returns them as a list of strings.

Example:

content = file.read()

line = file.readline()

lines = file.readlines()

Writing to a File:

File objects provide the write() method to write data to a file. It takes a string

parameter and returns None.

Example:

file.write("Hello, World!")

File Position and Seeking:

File objects keep track of the current position within the file using the tell()

method, which returns the current position in bytes.

The seek() method is used to change the file object's current position. It takes

two parameters: the offset and the from_what argument, which specifies the

reference position (0 for the beginning, 1 for the current position, and 2 for the

end).

102

Example:

position = file.tell()

file.seek(0, 0) # Move to the beginning of the file

Closing a File:

It's important to close a file after you are done with it to release system

resources. The close() method is used to close a file.

Example:

file.close()

The combination of console IO and file IO capabilities in Python allows you to

interact with users, read from external data sources, and write data to files.

These IO functionalities are vital for building interactive and data-driven

applications. Remember to handle exceptions and close files properly to ensure

efficient and reliable IO operations.

Python Programs with Output

Hello, World!:

print("Hello, World!")

Output:

Hello, World!

Sum of Two Numbers:

num1 = 5

num2 = 10

sum = num1 + num2

print("The sum is:", sum)

Output:

The sum is: 15

Factorial Calculation:

def factorial(n):

103

 if n == 0:

 return 1

 else:

 return n * factorial(n-1)

num = 5

result = factorial(num)

print("The factorial of", num, "is", result)

Output:

The factorial of 5 is 120

Fibonacci Series:

def fibonacci(n):

 sequence = [0, 1]

 while len(sequence) < n:

 next_num = sequence[-1] + sequence[-2]

 sequence.append(next_num)

 return sequence

num = 10

fib_sequence = fibonacci(num)

print("The Fibonacci sequence up to", num, "terms is:", fib_sequence)

Output:

vbnet

The Fibonacci sequence up to 10 terms is: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Guessing Game:

import random

target_num = random.randint(1, 100)

guesses_taken = 0

while True:

 guess = int(input("Take a guess: "))

 guesses_taken += 1

 if guess < target_num:

 print("Too low!")

 elif guess > target_num:

104

 print("Too high!")

 else:

 print("Congratulations! You guessed the number in", guesses_taken,

"guesses.")

 break

Output (example interaction):

Take a guess: 50

Too high!

Take a guess: 30

Too low!

Take a guess: 40

Congratulations! You guessed the number in 3 guesses.

Prime Number Checker:

def is_prime(n):

 if n < 2:

 return False

 for i in range(2, int(n**0.5) + 1):

 if n % i == 0:

 return False

 return True

num = 17

if is_prime(num):

 print(num, "is a prime number.")

else:

 print(num, "is not a prime number.")

Output:

17 is a prime number.

Reverse a String:

string = "Hello, World!"

reversed_string = string[::-1]

print("Reversed string:", reversed_string)

Output:

105

Reversed string: !dlroW ,olleH

Check Leap Year:

year = 2024

if year % 4 == 0 and (year % 100 != 0 or year % 400 == 0):

 print(year, "is a leap year.")

else:

 print(year, "is not a leap year.")

Output:

2024 is a leap year.

Sum of List Elements:

numbers = [1, 2, 3, 4, 5]

sum = 0

for num in numbers:

 sum += num

print("The sum of the numbers is:", sum)

Output:

The sum of the numbers is: 15

106

This Page Intentionally Left Blank

