Medical Image Augmentation and Enhancement using Machine Learning and Deep Learning

350.00

Author(s) : Dr. S. Mohankumar, Mrs. Kavita Bhatt

ISBN: 978-93-91303-40-2

Volume: 2022

Edition: 1

Pages: 148

Price: INR 350/=

First Published: October, 2022

DOI:  https://doi.org/10.47715/JPC.978-93-91303-40-2

Out stock

Out of stock

SKU: 978-93-91303-40-2 Category:

Abstract

Medical image analysis, often known as MIA, is a subfield of the artificial intelligence discipline of computer vision. This discipline started to take shape in the 1990s by using mathematical methods to solve problems with non-medical picture analysis. For clinicians, medical photographs are a valuable source of information. Medical image analysis is changing as a result of the development of Deep Learning and the use of its approaches. Accuracy and precision of medical image diagnostic is always a concern in the medical field. The recent development of Deep learning in MIA has opened vistas for different exploration and experimentation. In recent years, machine learning has become more prevalent in processing, analysing and diagnosing medical images. The main advantage of machine learning is its ability to analyse and analyse medical images by algorithmically utilising the hierarchical relationship inside data. Machine learning is the leading research topic in medical imaging analysis because it uses artificial intelligence as a core system because of its data structure and related labelling characteristics. It relies on two essential components: first, the analysis of medical pictures using data science concepts and methodologies to offer exact patient metrics, and second, human-AI interactions in which AI actors aid patients. With the ability to interpret medical images using deep learning (DL) methods, radiologists and other professionals now have access to various options and innovations. We have categorized and summarized the methods and technological framework when adopting deep learning approaches. Analysis of medical images.

Keywords:

Medical Image Augmentation, Enhancement, Machine Learning, Deep Learning

 

Bibliography

[1] W. M. Wells, “Medical Image Analysis – past, present, and future,” Medical Image Analysis, vol. 33, pp. 4-6, 2016.
[2] R. &. G. G. &. Y. N. a. K. M. Yousef, “A holistic overview of deep learning approach in medical imaging,” Multimedia Systems, vol. 28, no. 3, 2022.
[3] M. a. R. S. Puttagunta, “Medical image analysis based on deep learning approach,” Multimedia Tools and Applications, vol. 80, no. 16, 01 07 2021.
[4] D. &. H. A. &. M. C. J. &. G. A. &. S. L. &. v. d. D. G. &. S. J. &. A. I. &. P. V. &. L. M. &. D. S. Silver, G. &. Dominik and Le, “Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 01 01 2016.
[5] D. &. W. G. &. S. H.-I. Shen, “Deep Learning in Medical Image Analysis,” Annual Review of Biomedical Engineering, vol. 19, no. 1, pp. 221-248, 21 06 2017.
[6] L. W. J. R. a. T. L. J. Ker, “Deep Learning Applications in Medical Image Analysis,” IEEE Access, vol. 6, pp. 9375-9389, 2018.
[7] S. K. a. G. H. a. D. C. a. D. J. S. a. V. G. B. a. M. A. a. P. J. L. a. R. D. a. S. R. M. Zhou, “A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises,” Proceedings of the IEEE, vol. 109, no. 5, pp. 820-838, 2021.
[8] S. U. a. L. Y.-D. a. S. J. a. K. I. Jan, “Sensor Fault Classification Based on Support Vector Machine and Statistical Time-Domain Features,” IEEE Access, vol. 5, pp. 8682-8690, 2017.
[9] A.S. S. a. L. V. Singh, “Explainable Deep Learning Models in Medical Image Analysis,” Journal of Imaging, vol. 6, no. 6, 2020.
[10] Y. J. C. Y. S. K. J. R. B. H. K. N. Kim M, “Deep Learning in Medical Imaging,” Neurospine, vol. 16, no. 4, pp. 657-668, 12 2019.
[11] H. C. H. S. C. W. C. Y. Hua KL, “Computer-aided classification of lung nodules on computed tomography images via deep learning technique,” Onco Targets Ther, vol. 8, 04 08 2014.
[12] A. S. H. A. L. T. G. V. L. Sourya Sengupta, “Ophthalmic diagnosis using deep learning with fundus images – A critical review,” Artificial Intelligence in Medicine, vol. 102, 2020.
[13] A.B. C. a. P. C. S. a. K. D. B. Holzinger, “What do we need to build explainable AI systems for the medical domain? ” arXiv preprint arXiv:1712.09923, 2017.
[14] M. a. B. W. a. M. L. S. Stano, “Explainable 3D convolutional neural network using GMM encoding,” in Twelfth International Conference on Machine Vision (ICMV 2019), vol. 11433, 2020, pp. 507-513.
[15] T. J. a. A. L. a. V. A. a. A. L. a. G. J. a. K. T. a. W. S. a. K. J. a. R. C. a. K. U. a. o. Adler, “Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks,” International Journal of computer-assisted radiology and surgery, vol. 14, no. 6, pp. 997–1007, 2019.
[16] A. M. Benedikt Wiestler, “Deep learning for medical image analysis: a brief introduction,” Neuro-Oncology Advances, vol. 2, no. Supplement_4, p. iv35–iv41, 12 2020.
[17] N. Mao, 6 – Methods for characterisation of nonwoven structure, property, and performance, G. Kellie, Ed., https://doi.org/10.1016/B978-0-08-100575-0.00006-1: Woodhead Publishing, 2016, pp. 155-211.
[18] “Image analysis,” Wikipedia, 2013. [Online]. Available: https://en.wikipedia.org/wiki/Image_analysis.
[19] T. B. Chris Solomon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab, 10.1002/9780470689776, ISBN 9780470844724: John Wiley & Sons, Ltd, 22 December 2010.
[20] A.S. D. w. d. s. o. p. data, in Artificial Intelligence and Deep Learning in Pathology, S. Cohen, Ed., DOI https://doi.org/10.1016/B978-0-323-67538-3.00005-1, ISBN: 978-0-323-67538-3: Elsevier, 2021, pp. 77-92.
[21] R. L. Fernando Mendoza, “Basics of Image Analysis,” in Hyperspectral Imaging Technology in Food and Agriculture, ISBN 978-1-4939-2835-4, DOI: 10.1007/978-1-4939-2836-1_2: Springer.
[22] d. J. A. F. A. (. Prats-Montalba´n JM, “Multivariate image analysis: a review with applications.,” Chemometrics Intell Lab, vol. 107, no. DOI: https://doi.org/10.1016/j.chemolab.2011.03.002, p. 1–23, 2011.
[23] A. W. S. José Miguel Aguilera, “Food Engineering Series,” in Microstructural Principles of Food Processing and Engineering, ISBN: 978-0-8342-1256-5, Springer New York, NY, 1999, pp. XIV, 432.
[24] J. L. C. R. M. e. a. Zhang, “A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches,” Artif Intell Rev, vol. 55, p. 2875–2944, 2022.
[25] A. S. V.Mendonça, 4 – Digital Image Processing, W. CHEN, Ed., doi: https://doi.org/10.1016/B978-012170960-0/50064-5, ISBN: 978-0-12-170960-0: Academic Press, 2005, pp. 891-910.
[26] “Digital Image Processing,” [Online]. Available: https://sisu.ut.ee/imageprocessing/book/1.
[27] S. B. J. Lamoureux, “Image Acquisition,” in Image Analysis, Sediments and Paleoenvironments, vol. 7, DOI: https://doi.org/10.1007/1-4020-2122-4_2, Springer, Dordrecht, pp. 11-34.
[28] D. I. Processing, “BEC007-Digital Image Processing,” [Online]. Available: https://www.bharathuniv.ac.in/colleges1/downloads/courseware_ece/notes/BEC007%20%20-Digital%20image%20processing.pdf.
[29] M. F. A. B. M Lindenbaum, “On Gabor’s contribution to image enhancement,” Pattern Recognition, vol. 27, no. 1, pp. 1-8, URL: https://www.sciencedirect.com/science/article/pii/0031320394900132 ISBN 0031-3203 1994.
[30] B. a. Y. O. a. C. V. Chandrakar, “A SURVEY OF NOISE REMOVAL TECHNIQUES FOR ECG SIGNALS,” International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 3, pp. 1354–1357, March 2013.
[31] S. J. Reeves, “Chapter 6 – Image Restoration: Fundamentals of Image Restoration,” in Academic Press Library in Signal Processing: Volume 4, vol. 4, J. T. a. A. S. a. A. K. R. a. A. S. a. P. A. N. a. R. C. a. S. Theodoridis, Ed., DOI: https://doi.org/10.1016/B978-0-12-396501-1.00006-6, URL: https://www.sciencedirect.com/science/article/pii/B9780123965011000066: Elsevier, 2014, pp. 165-192.
[32] S. J. Sangwine, Chapter Six – Perspectives on Color Image Processing by Linear Vector Methods Using Projective Geometric Transformations, vol. 175, P. W. Hawkes, Ed., DOI: https://doi.org/10.1016/B978-0-12-407670-9.00006-8, URL:{https://www.sciencedirect.com/science/article/pii/B9780124076709000068: Elsevier, 2013, pp. 283-307.
[33] “Color Image Processing,” [Online]. Available: https://eecs.wsu.edu/~cs445/Lecture_14.pdf.
[34] W. S. Björn Jawerth, “{An Overview of Wavelet Based Multiresolution Analyses,” SIAM Review, vol. 36, no. 3, pp. 377-412, 1994.
[35] H. S. Samra, “Image Compression Techniques,” INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, vol. 2, no. 2, p. 49–52, 2012.
[36] N. Efford, “Morphological Image Processing,” in Digital Image Processing: A Practical Introduction Using JavaTM, URL: https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm, Pearson Education, 2000.
[37] S. S. Ribeiro, “USING SIMPLE CV FOR SEED METADATA EXTRACTION INTO XML DOCUMENT,” Journal of Applied Computing, vol. 4, no. 29, April 2014.
[38] R. a. G. G. a. Y. N. a. K. M. Yousef, “A holistic overview of deep learning approach in medical imaging,” Multimedia Systems, vol. 28, no. 3, p. 881–914, 2022.
[39] D. K. S. B. S. B. Mousumi Gupta, “Computer Vision and Machine Intelligence in Medical Image Analysis,” in International Symposium, ISCMM 2019, https://doi.org/10.1007/978-981-13-8798-2, 2020.
[40] A. L. a. T. K. a. B. E. B. a. A. A. A. S. a. F. C. a. M. G. a. J. A. {. d. L. a. B. {. G. a. C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60-88, 2017.
[41] E. S. K. &. C. S. Bindu, “Medical Image Analysis Using Deep Learning: A Systematic Literature Review,” International Conference on Emerging Technologies in Computer Engineering, vol. 985, p. 81–97, 2019.
[42] U. &. V. G. &. N. D. &. D. P. &. M. B. &. W. S. &. V. L. &. H. M. &. L. F. &. M. S. &. S. K. &. S. E. Javaid, “Artificial intelligence and machine learning for medical imaging: A technology review,” Physica Medica: European Journal of Medical Physics, vol. 83, pp. 242-256, 1 3 2021.
[43] S. K. P. B. A. Sujata Dash, Deep Learning Applications in Medical Image Analysis, S. K. P. B. A. Sujata Dash, Ed., Scrivener Publishing LLC, 2021.Medical Image Augmentation and Enhancement Using Machine Learning and Deep Learning
[44] A. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, vol. 65, no. 6, p. 386–408, 1958.
[45] Y. a. G. M. L. a. D. K. a. V. C. J. a. S. R. A. a. M. C. E. Wu, “Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer.,” Radiology, vol. 187, no. 1, pp. 81–87.
[46] J. a. W. L. a. R. J. a. L. T. Ker, “Deep Learning Applications in Medical Image Analysis,” IEEE Access, 12 2017.
[47] W. a. D. K. a. G. M. L. a. N. R. M. a. S. R. A. Zhang, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Medical Physics, vol. 23, no. 4, pp. 595–601, 1996.
[48] Y. B. a. I. D. a. L. W. a. S. L. a. E. K. a. H. Greenspan, “Chest pathology detection using deep learning with non-medical training,” 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 294-297, 2015.
[49] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros and R. Kim, “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs,” vol. 316, no. 22, pp. 2402-2410, 2016.
[50] J. C. a. A. N. Duncan, “Medical Image Analysis: Progress over Two Decades and the Challenges Ahead,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, p. 85–106, 1 2000.
[51] A. G. C. D. J. S. D. B. V. G. A. M. J. L. P. D. R. R. M. S. S. Kevin Zhou, “A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies with Progress Highlights, and Future Promises,” Proceedings of the IEEE, pp. 820-838, May 2021.
[52] “Synopsys,” [Online]. Available: https://www.synopsys.com/glossary/what-is-medical-image-processing.html.
[53] F. M. L. D. M. W. G. K. C. a. B. L. T. M. J. McAuliffe, “Medical Image Processing, Analysis and Visualization in clinical research,” in Proceedings 14th IEEE Symposium on Computer-Based Medical Systems, 10.1109/CBMS.2001.941749, 2001.
[54] S. K. a. A. A. a. A. L. F. a. H. A. Kumar, Chapter 6 – ROI extraction in CT lung images of COVID-19 using Fast Fuzzy C means clustering, V. E. B. a. O. G. a. G. W. a. M. A. a. O. Postolache, Ed., https://doi.org/10.1016/B978-0-12-824473-9.00001-X, URL https://www.sciencedirect.com/science/article/pii/B978012824473900001X: Academic Press, 2021, pp. 103-119.
[55] A. W. L. a. R. J. a. L. T. Ker, “Deep Learning Applications in Medical Image Analysis,” IEEE Access, vol. 6, pp. 9375-9389, 2018.
[56] “Medical-image-processing-from-formation-to-interpretation,” [Online]. Available: https://www.analog.com/en/technical-articles/medical-image-processing-from-formation-to-interpretation.html.
[57] “deserve-medical-image-processing,” [Online]. Available: https://spie.aorg/publications/deserno-medical-image-processing?SSO=1.
[58] L.-K. a. L. S.-C. Lee, “A survey of medical image processing tools,” in 4th International Conference on Software Engineering and Computer Systems (ICSECS), 10.1109/ICSECS.2015.7333105, 2015.
[59] M. M. M. L. I. Hans J. Johnson, “Johnson, et al. The ITK Software Guide Book 1: Introduction and Development Guidelines,” in The ITK Software Guide Book 1: Introduction and Development Guidelines Fourth Edition, vol. 5, 2021.
[60] M. J. a. C. F. B. a. T. E. B. a. M. W. W. a. S. M. Smith, “FSL,” NeuroImage, vol. 62, no. 2, pp. 782-790, issn: 1053-8119 2012.
[61] W. D. a. F. K. J. a. A. J. T. a. K. S. J. a. N. T. E. Penny, Statistical parametric mapping: the analysis of functional brain images, Elsevier, 2011.
[62] F. a. F. T. Provost, “Data Science and its Relationship to Big Data and Data-Driven Decision Making,” Big Data, vol. 1, no. 1, pp. 51-59, 2013.
[63] A. K. V. a. A. S. a. S. N. K. a. S. M. R. Ranjani, “Ranjani, J.A Deep study of Data science related problems, application and machine learning algorithms utilized in Data science and Kalaichelvi, V.K.G. and Anbalagan, Swathi and S, Niranjan Kumar and Sudarsan, Murari Reddy,” in 2022 International Conference on Communication, Computing, and Internet of Things (IC3IoT), 10.1109/IC3IOT53935.2022.9767897, 2022, pp. 1-6.
[64] D. a. G. R. a. G. a. M. S. a. T. A. K. Goyal, “Emerging Trends and Challenges in Data Science and Big Data Analytics,” in 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 10.1109/ic-ETITE47903.2020.316, 2020.
[65] A. K. a. G. R. Tyagi, “Machine Learning with Big Data,” in Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur – India, 2019.
[66] “what-artificial-intelligence-types-uses-and-how-it-works,” [Online]. Available: https://www.analyticssteps.com/blogs/what-artificial-intelligence-types-uses-and-how-it-works.
[67] “Callaghan-innovation-infographic-artificial-intelligence,” [Online]. Available: https://www.callaghaninnovation.govt.nz/sites/all/files/callaghan-innovation-infographic-artificial-intelligence.pdf.
[68] Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN COMPUT. SCI, vol. 2, no. 6, p. 420, 18 August 2021.
[69] F. a. I. S. M. S. a. A. N. a. J. N. K. Altaf, “Going Deep in Medical Image Analysis: Concepts, Methods, Challenges, and Future Directions,” vol. 7, pp. 99540-99572, 2019.
[70] S. a. D. R. Shurrab, “Self-Supervised Learning Methods and Applications in Medical Imaging Analysis: A Survey,” PeerJ Computer Science, vol. 8, p. e1045, 20 07 2022.
[71] P. a. J. J.Jiang, “Medical image analysis with artificial neural networks,” Computerized Medical Imaging and Graphics, vol. 34, no. 8, pp. 617-631.
[72] A. &. N. L. Balasubramanian, Machine Learning and Deep Learning Techniques for Medical Science, Boca Raton: CRC Press, 2022, p. 412.
[73] D. a. G. Y. a. W. L. a. S. D. Nie, “ASDNet: attention based semi-supervised deep networks for medical image segmentation,” in an international conference on medical image computing and computer-assisted intervention, Springer, 2018, pp. 370–378.
[74] H. K. a. J. D. a. M. T. a. E. G. a. Y. B. a. I. B. Ayed, “Constrained-CNN losses for weakly supervised segmentation,” Medical Image Analysis, vol. 54, pp. 88-99, 2019.
[75] X. a. P. Y. a. L. L. a. L. Z. a. B. M. a. S. R. M. e. L. a. W. X. a. C. G. a. Y. L. Wang, chest X-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases, Cham: Springer International Publishing, 2019, pp. 369–392.
[76] G. a. L. M. a. C. G. a. A. M. D. a. C. B. a. R. C. Quellec, “Weakly supervised classification of medical images,” 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 110 – 113, 05 2012.
[77] C. M. Bishop, Pattern Recognition and Machine Learning, DOI: 78-1-4939-3843-8 ISBN: 978-0-387-31073-2: Springer New York, NY, 2006, pp. XX, 738.
[78] P. A. a. H. B. a. W. Maass, “A learning rule for very simple universal approximators consisting of a single layer of perceptrons,” Neural Networks, vol. 21, no. 5, pp. 786-795, URL https://www.sciencedirect.com/science/article/pii/S0893608007002730 2008.
[79] A. F. &. R. Khonsari, “Deep learning in medical image analysis: The third eye for doctors,” Journal of Stomatology, Oral and Maxillofacial Surgery, vol. 120, no. 4, pp. 279-288, 09 2019.
[80] K. E. H. &. E. R. &. A. V. &. R. Klein, “Imaging, Machine Learning and Deep Learning in Medical Imaging: Intelligent,” Journal of Medical Imaging and Radiation Sciences, vol. 50, no. 4, pp. 477-487, 12 2019.
[81] S. T. &. F. A. Morgan P. McBee & Omer A. Awan & Andrew T. Colucci & Cameron W. Ghobadi & Nadja Kadom & Akash P. Kansagra & MS, “Deep Learning in Radiology,” Radiology Research Alliance, vol. 25, no. 11, pp. 1472-1480, 11 2018.
[82] S. K.-C. B. S. C. E. F. P. L. S. M. D. R. W. K. K. Curtis P Langlotz & Bibb Allen & Bradley J Erickson &, “A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop,” Radiology, pp. 781-791, 6 2019.
[83] T. S. &. A. TK, “Toward Augmented Radiologists: Changes in Radiology Education in the Era of Machine Learning and Artificial Intelligence,” PERSPECTIVE, vol. 25, no. 6, pp. 747-750, 06 2018.
[84] C. M. Bishop, “Neural Networks for Pattern Recognition,” Oxford Univ. Press, 1995.
[85] T. J. a. R. Schalkoff, “Artificial neural networks,” Image and Vision Computing, vol. 6, no. 4, pp. 203-214, 1988.
[86] A. B.M. A. U. J. a. G. V. a. D. N. a. P. D. a. B. M. a. S. W. a. L. V. a. M. H. a. F. L. a. S. M. a. K. S. a. E. S. a. J. A., “Artificial intelligence and machine learning for medical imaging: A technology review,” Physica Medica, vol. 83, pp. 242-256, 03 2021.
[87] F. a. J. Y. a. Z. H. a. D. Y. a. L. H. a. M. S. a. W. Y. a. D. Q. a. S. H. a. W. Y. Jiang, “Artificial intelligence in healthcare: past, present and future,” Stroke and Vascular Neurology, vol. 2, no. 4, pp. 230-243, 2017.
[88] C. Z. P. &. H. K. Janisch, “Machine learning and deep learning,” Electron Markets, vol. 31, p. 685–695, 2021.
[89] B. P. A. H. L. W. X. D. K. C. K. S. R. a. G. M. Sahiner, “Deep learning in medical imaging and radiation therapy,” American Association of Physicists in Medicine, pp. e1-e36, 20 11 2018.
[90] Y. a. B. B. a. D. J. S. a. H. D. a. H. R. E. a. H. W. a. J. L. D. LeCun, “Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.
[91] W. Z. a. R. L. a. H. D. a. L. W. a. W. L. a. S. J. a. D. Shen, “Deep convolutional neural networks for multi-modality isointense infant brain image segmentation,” NeuroImage, vol. 108, pp. 214-224, 3 2015.
[92] J. K. a. G. U. a. A. H. a. D. S. a. K. M.-H. a. M. B. a. A. Biller, “Deep MRI brain extraction: A 3D convolutional neural network for skull stripping,” NeuroImage, vol. 129, pp. 460-469, 04 2016.
[93] H.-I. &. L. S.-W. &. S. D. Suk, “Latent feature representation with stacked auto-encoder for AD/MCI diagnosis,” Brain Struct Funct, vol. 220, p. 841–859, 2015.
[94] H.-I. S. Shen, S.-W. Lee and Dinggang, “Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis,” NeuroImage, vol. 101, pp. 569-582, 11 2014.
[95] V. N. a. G. E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines, 2010, pp. 807-814.
[96] G. E. H. A. R. R. SALAKHUTDINOV, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504-507, 28 07 2006.
[97] B. Y. &. C. A. Goodfellow, Deep learning, The MIT Press, 2016.
[98] A. S. I. a. H. G. E. Krizhevsky, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems,” Advances in neural information processing systems, vol. 25, 2012.
[99] J.-Z. a. N. D. a. C. Y.-H. a. Q. J. a. T. C.-M. a. C. Y.-C. a. H. C.-S. a. S. D. a. C. C.-M. Cheng, “Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans,” Scientific reports, vol. 6, no. 1, pp. 1-13, 2016.
[100] T. P. O. T. J. S. W. W. R. W. Ashish Shrivastava, “Learning from simulated and unsupervised images through adversarial training,” Computer Vision and Pattern Recognition, vol. 2, 2017.
[101] K. a. S. N. a. D. D. a. E. D. a. K. D. Bousmalis, “Unsupervised pixel-level domain adaptation with generative adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, vol. 1, 2017, pp. 3722-3731.
[102] X. Y. a. E. W. a. P. Babyn, “Generative adversarial network in medical imaging,” Medical Image Analysis, vol. 58, p. 101552.
[103] W. L. Y. J. P. S. S. R. D. A. D. E. V. V. A. R. Christian Szegedy, “Going deeper with convolutions,” Proceedings of the IEEE conference, pp. 1-9, 2015.
[104] B. C. K. A. v. G. B. N. N. A. S. M. A. Kazeminia S, “GANs for medical image analysis,” Artif Intell Med ., vol. 109, p. 101938, 09 2020.
[105] A. S. D. Kaur, “Fusion of medical images using deep belief networks.,” Cluster Comput, vol. 23, p. 1439–1453, 2020.
[106] Y. L. M. S. Zhiyuan Liu, “Representation Learning for Natural Language Processing,” pp. XXIV, 334, ISBN 978-981-15-5572-5 2020.
[107] data-augmentation-guide, “www.v7labs.com,” [Online]. Available: https://www.v7labs.com/blog/data-augmentation-guide.
[108] “rossbulat.medium.com,” [Online]. Available: https://rossbulat.medium.com/precision-and-recall-how-its-used-in-deep-learning-a252d03ed792.
[109] T. Z. Z. Q. X. L. Kui Ren, “Adversarial Attacks and Defenses in Deep Learning,” Research Artificial Intelligence—Feature Article, vol. 6, no. 3, pp. 346-360, 2020.
[110] S. S. A. D. Joy Bhattacharjee, “Chapter 10 – Novel detection of cancerous cells through an image segmentation approach using principal component analysis,” Theoretical Foundations and Applications, pp. 171-195, 2021.
[111] P. H. R. I. M. G. B. a. J. P. Vincent François-Lavet, “An Introduction to Deep Reinforcement Learning,” Foundations and Trends in Machine Learning:, vol. 11, pp. 3-4, 2018.
[112] “analyticsvidhya,” [Online]. Available: https://www.analyticsvidhya.com/blog/2021/10/understanding-transfer-learning-for-deep-learning/.
[113] A. Z. a. G. M. K. a. L. Y. a. K. M. A. Khan, “Deep Neural Architectures for Medical Image Semantic Segmentation: Review,” IEEE Access, vol. 9, pp. {83002-83024, 2021.
[114] P. &. G. D. L. &. P. C. R. &. N. P. &. S. G. Lakhani, “Hello World Deep Learning in Medical Imaging.,” J Digit Imaging, vol. 31, p. 283–289, 2018.
[115] “www.imaios.com,” [Online].
[116] R. Y. a. Y. Yu, “Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis,” Sec. Cancer Imaging and Image-directed Interventions, 2021.
[117] L. G. v. G. B. G.-M. A. S. C. M. R. d. H. A. K. N. Kooi T, “Large scale deep learning for computer-aided detection of mammographic lesions,” Med Image Anal, vol. 35, pp. 303-312, 2017.
[118] J.-Z. a. N. D. a. C. Y.-H. a. Q. J. a. T. C. a. C. Y.-C. a. H. C.-S. a. S. D. a. C. C.-M. Cheng, “Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans,” Scientific Reports, vol. 6, p. 24454, April 2016.
[119] H. L. S. R. Chan HP, “Computer-Aided Diagnosis in the Era of Deep Learning,” Med Phys., vol. 47, pp. e218-e227., PMID: 32418340; PMCID: PMC7293164. 2020.
[120] J. Z. Z. L. J. L. Yi Li, “Medical image fusion method by deep learning,” Engineering, vol. 2, pp. 21-29, 2021.
[121] H. D. B. Zhang, “A Review on Deep Learning in Medical Image Reconstruction,” J. Oper. Res. Soc. China, vol. 8, p. 311–340, 2020.
[122] B. a. W. Y. a. W. L. a. S. D. a. Z. L. e. G. a. F. H. Yu, “Medical Image Synthesis via Deep Learning,” in Deep Learning in Medical Image Analysis: Challenges and Applications, vol. 1213, Cham., Springer, 2020, p. 23–44.
[123] T. L. Y. F. Y. W. J. C. W. L. T. a. Y. X. Wang, “A review on medical imaging synthesis using deep learning and its clinical applications,”American Association of Physicists in Medicine (AAPM), vol. 22, pp. 11-36., https://doi.org/10.1002/acm2.13121 2021.
[124] E. A. a. M. B. {. G. a. J. T. a. R. W. a. J. Obungoloch, “A survey on deep learning in medical image reconstruction,” Intelligent Medicine, pp. 118-127, 2021.
[125] B. a. L. J. Z. a. C. S. F. a. R. B. R. a. R. M. S. Zhu, “Image reconstruction by domain-transform manifold learning,” Nature, vol. 555, pp. 487-492, 2018.
[126] Wikipedia, “Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Content-based_image_retrieval.
[127] S. a. A. K. a. C. J. P. a. C.-A. J. a. H. G. Asgari Taghanaki, “Deep semantic segmentation of natural and medical images: a review,” Artif Intell Rev, vol. 54, p. 137–178, 2021.
[128] A. A. A. E. A. A. Nasser Alalwan, “Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation,” Alexandria Engineering Journal, vol. 60, no. 1, pp. 231-1239, 2021.
[129] F. a. G. A. a. R. S. a. T. Z. a. F. Y. a. J. W. a. A. K. a. L. S. Jiang, “Medical image semantic segmentation based on deep learning,” Neural Computing and Applications, vol. 29, no. 5, p. 1257–1265, 2018.
[130] L. L. W. J. W. S. Wu Y, “Application of semantic segmentation based on convolutional neural network in medical images,” Journal of Biomedical Engineering, pp. 533-540.
[131] M. N. S. Z. A. Razzak, “Deep Learning for Medical Image Processing: Overview, Challenges and the Future.,” Classification in BioApps, vol. 26, p. 323–350, 2018.
[132] C. K. T. Shorten, “A survey on Image Data Augmentation for Deep Learning.,” Journal of Big Data, vol. 6, no. 1, https://doi.org/10.1186/s40537-019-0197-0 2019.
[133] H. M. N. V. J. D. L. H. A. H. Phillip, “A review of medical image data augmentation techniques for deep learning applications,” Med Imaging Radiat Oncol, vol. 65, pp. 545-563, 19 June 2021.
[134] data-augmentation, “/iq.opengenus.org,” [Online]. Available: https://iq.opengenus.org/data-augmentation/.
[135] F. L. A. N. M. H. Rasool Fakoor, “Using deep learning to enhance cancer diagnosis and classification.,” in Proceedings of the international conference on machine learning, vol. 28, 2013, pp. 3937–3949.
[136] A. M. A. M. Grochowski, “Data augmentation for improving deep learning in an image classification problem,” International Interdisciplinary PhD Workshop (IIPhDW), vol. 10.1109/IIPHDW.2018.8388338, pp. 117-122, 2018.
[137] “data-augmentation/,” [Online]. Available: https://ai.stanford.edu/blog/data-augmentation/.
[138] B. T. N. H. S. Abdollahi, “Data Augmentation in Training Deep Learning Models for Medical Image Analysis,” Intelligent Systems Reference Library, vol. 186, pp. 167–180, 2020.
[139] G. F. Y. D. R. D. Hussain Z, “Differential Data Augmentation Techniques for Medical Imaging Classification Tasks,” AMIA Annu Symp Proc., pp. 979-984, 2017.
[140] image-data-augmentation-and-ai/, “ww.charterglobal.com,” [Online]. Available: https://www.charterglobal.com/image-data-augmentation-and-ai/.
[141] G. F. Y. D. R. D. Hussain Z, “Differential Data Augmentation Techniques for Medical Imaging Classification Tasks.,” AMIA Annu Symp Proc, pp. 979-984, PMID: 29854165 PMCID: PMC5977656 2018.
[142] C. &. S. S. &. M. M. Song, “A Spatial and Frequency Domain Analysis of the Effect of Removal Attacks on Digital Image Watermarks‖,” 2010.
[143] data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/, “nanonets.com/,” [Online]. Available: https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/.
[144] “paperswithcode.com,” [Online]. Available: https://paperswithcode.com/method/random-gaussian-blur.
[145] “Introducing an Improved Shear Augmentation,” [Online]. Available: https://blog.roboflow.com/shear-augmentation/#:~:text=The%20shear%20augmentation%20is%20a,tweaking%20the%20base%20images%20programmatically.
[146] X. D. L. Z. Y. Y. Guoliang Kang, “PatchShuffle Regularization,” Computer Vision and Pattern Recognition.
[147] L. &. P. M. &. B. S. &. L. A. Nanni, “Feature transforms for image data augmentation,” Neural Comput & Applic.
[148] A. S. D. a. P. J. Simard, “Best practices for convolutional neural networks applied to visual document analysis,” Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings., IEEE, 2003, pp. 958-963.
[149] H. X. a. G. R. a. J. Cai, “A review on 3D deformable image registration and its application in dose warping,” Radiation Medicine and Protection, vol. 1, no. 4, pp. 171-178, https://doi.org/10.1016/j.radmp.2020.11.002 2020.
[150] Z. a. C. K. a. P. M. a. W. M. a. S. Z. Tang, “An Augmentation Strategy for Medical Image Processing Based on Statistical Shape Model and 3D Thin Plate Spline for Deep Learning,” IEEE Access, vol. 7, pp. 133111-133121, 2019.
[151] V. a. Y. K. a. P. P. J. a. S. R. M. Sandfort, “Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks,” Scientific Reports, vol. 9, no. 1.
[152] F. B. S. O. M. J. C. Zach Eaton-Rosen, “Improving Data Augmentation for Medical Image Segmentation,” 1st Conference on Medical Imaging with Deep Learning, 2018.
[153] H. a. C. M. a. D. Y. N. a. L.-P. D. Zhang, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.
[154] G. B. F. D. J. V. G. A. V. D. Amy Zhao, “Data Augmentation Using Learned Transformations for One-Shot Medical Image Segmentation,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8543-8553, https://doi.org/10.48550/arXiv.1902.09383 2019.
[155] C. a. Q. C. a. Q. H. a. O. C. a. W. S. a. C. L. a. T. G. a. B. W. a. R. D. e. A. L. a. A. P. a. S. D. a. M. D. a. Z. M. Chen, “Realistic Adversarial Data Augmentation for MR Image Segmentation,” in Medical Image Computing and Computer Assisted Intervention — MICCAI 2020, https://doi.org/10.1007/978-3-030-59710-8_65, Springer International Publishing, 2020, pp. 667–677.
[156] A. P. V. A. a. C. A. S. S. Pereira, “Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1240-1251, 2016.
[157] M. A. V. A. M. M. L. S. d. V. M. J. N. L. B. a. I. I. P. Moeskops, “Automatic segmentation of MR brain images with a convolutional neural network,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1252-1261, https://doi.org/10.1109/TMI.2016.2548501 2016.
[158] J. a. L. M. a. Z. Z. e. A. L. a. A. P. a. S. D. a. M. D. a. Z. M. A. a. Z. S. K. a. R. D. a. J. L. Xu, Automatic Data Augmentation for 3D Medical Image Segmentation, Vols. ISBN 978-3-030-59710-8, Cham, 10.1007/978-3-030-59710-8_37: Springer International Publishing, 2020, pp. 378–387.
[159] N. K. C. F. B. E. E. A. B. O. D. E. K. Krishna Chaitanya, “Semi-supervised task-driven data augmentation for medical image segmentation,” Medical Image Analysis, vol. 68, 2021.
[160] H.-C. a. T. N. A. a. R. J. K. a. S. C. G. a. S. M. L. a. G. J. L. a. A. K. P. a. M. M. e. A. a. G. O. a. O. I. a. B. N. Shin, “Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks,” in Simulation and Synthesis in Medical Imaging, Cham, 10.1007/978-3-030-00536-8_1: Springer International Publishing, 2018, pp. 1–11.
[161] E. K. M. A. J. G. a. H. G. M. Frid-Adar, “Synthetic data augmentation using GAN for improved liver lesion classification,” IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289-293, 10.1109/ISBI.2018.8363576 2018.
[162] C. a. H. K. a. O. C. a. Q. C. a. B. W. a. R. D. Chen, “Cooperative Training and Latent Space Data Augmentation for Robust Medical Image Segmentation.,” in Medical Image Computing and Computer Assisted Intervention — MICCAI 2021, M. a. C. P. C. a. C. S. a. P. N. a. S. S. a. Z. Y. a. E. C. de Bruijne, Ed., https://doi.org/10.1007/978-3-030-87199-4_14: Springer International Publishing, pp. 149–159.
[163] J. a. L. M. a. Z. Z. e. A. L. a. A. P. a. S. D. a. M. D. a. Z. M. A. a. Z. S. K. a. R. D. a. J. L. Xu, “Automatic Data Augmentation for 3D Medical Image Segmentation,” in Medical Image Computing and Computer Assisted Intervention — MICCAI 2020, vol. 12261, Springer, Cham., Springer International Publishing, 2020, pp. 378–387.
[164] C. C. a. C. Q. a. C. O. a. Z. L. a. S. W. a. H. Q. a. L. C. a. G. T. a. W. B. a. D. Rueckert, “Enhancing MR image segmentation with realistic adversarial data augmentation,” Medical Image Analysis, vol. 82, p. 102597, 2022.
[165] S. J. S. Yadav, “Deep convolutional neural network based medical image classification for disease diagnosis.,” J Big Data, vol. 113, 2019.
[166] D. E. K. M. A. J. G. H. G. Maayan Frid-Adar, “GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification,” Neurocomputing, vol. 321, pp. 321-331, https://doi.org/10.1016/j.neucom.2018.09.013 2018.
[167] C. a. T. W. a. W. J. a. d. G. P. C. a. O. J. e. M. J. a. A. T. a. L. S.-L. a. C. V. a. B. S. a. M. D. a. Z. G. a. M.-H. Zhang, “Real Data Augmentation for Medical Image Classification,” in Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, 10.1007/978-3-319-67534-3_8: Springer International Publishing, 2017, pp. 67–76.
[168] C. T. L. H.-C. S. A. S. L. K. J. Y. L. L. R. M. S. Holger R. Roth, “Anatomy-specific classification of medical images using deep convolutional nets,” Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium, pp. 101 – 104, 2015.
[169] M. S, “Analysis of Different Wavelets For Brain Image Classification Using Support Vector Machine,” International Journal Of Advances In Signal And Image Sciences, vol. 2, no. 1, 2016.
[170] A. M. A. M. Grochowski, “Data augmentation for improving deep learning in an image classification problem,” International Interdisciplinary PhD Workshop (IIPhDW), pp. 117-122, 2018.
[171] Y. Z. Z. W. R. L. H. T. Z. Z. W. Hu, Data Augmentation in Logit Space for Medical Image Classification with Limited Training Data, Cham: Springer International Publishing, 2021, pp. 469–479.
[172] K. R. L. L. D. D.-F. J. Y. a. R. M. S. H. -C. Shin, “Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation,” EEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2497-2506, 2016.
[173] X. J. Zhu, “Semi-supervised Learning Literature Survey,” 2005.
[174] B. Z. M. P. A. V. C. Z. Xinghua Lu, “Enhancing Text Categorization with Semantic-enriched Representation and Training Data Augmentation,” Journal of the American Medical Informatics Association, vol. 13, no. 5, p. 526–535, 2006.
[175] S. H. Y. Z. D. T. Zhe Xu, “Augmenting Strong Supervision Using Web Data for Fine-Grained Categorization,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015.
[176] J. M. S. K. K. J. R. Rishi Raj, “Crossover-based technique for data augmentation Author links open overlay panel,” Computer Methods and Programs in Biomedicine, vol. 218, p. 106716, ISSN: 0169-2607 2022.
[177] L. Y. L. L. Q. D. a. P. A. H. Q. Liu, “Semi-Supervised Medical Image Classification With Relation-Driven Self-Ensembling Model,” IEEE Transactions on Medical Imaging, vol. 39, no. 11, pp. 3429-3440, 10.1109/TMI.2020.2995518. 2020.
[178] A. D. a. S. K. M. a. M. N. Mohanty, “9.14. Design of deep ensemble classifier with fuzzy decision method for biomedical image classification,” Applied Soft Computing, vol. 115, pp. 1568-4946, https://doi.org/10.1016/j.asoc.2021.108178 2022.
[179] L. a. W. X. a. W. L. a. M. D. a. Z. X. a. Z. Q. a. L. T. a. G. Z. Ju, “Improving Medical Images Classification with Label Noise Using Dual-Uncertainty Estimation,” IEEE Transactions on Medical Imaging, vol. 41, no. 96, pp. 1533-1546, 2022.
[180] R. C. Gonzalez, “Digital image processing,” Pearson Education India, 2009.
[181] Y. I. Y. C. Y. Li, “Medical Image Enhancement Using Deep Learning,” Intelligent Systems Reference Library, vol. 171, p. 53–76, ISBN: 978-3-030-32605-0 2020.
[182] J. P. a. K. S. R. P. Janani, “Image Enhancement Techniques: A Study,” Indian Journal of Science and Technology, vol. 8, no. 22, pp. 1-12, 2015.
[183] S. M. I. a. H. S. Mondal, “Image Enhancement Based Medical Image Analysis,” 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), p. 105, 2019.
[184] N. S. a. H. M. a. A. Shams, “Medical image enhancement based on histogram algorithms,” Procedia Computer Science, vol. 163, pp. 300-311.
[185] T. Chaira, “An improved medical image enhancement scheme using Type II fuzzy set,” Applied Soft Computing, vol. 25, pp. 293-308, 2014.
[186] Y. a. L. J. a. L. Y. a. F. H. a. H. Y. a. C. J. a. Q. H. a. W. Y. a. Z. J. a. Z. Y. Ma, “Structure and Illumination Constrained GAN for Medical Image Enhancement,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3955-3967, 10.1109/TMI.2021.3101937 2021.
[187] Z. W. H. L. X. W. S. Q. J. S. Chenyi Zhao, “A new approach for medical image enhancement based on luminance-level modulation and gradient modulation,” Biomedical Signal Processing and Control, vol. 48, pp. 189-196, https://doi.org/10.1016/j.bspc.2018.10.008 2019.
[188] D.-i. &. J. R. &. H. W. S. &. L. H. &. J. S. C. &. K. N. Eun, “Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: comparison of self-supervised and unsupervised approaches,” Scientific Reports, vol. 10, no. 1, https://doi.org/10.1038/s41598-020-69932-w 2020.
[189] J. J. Z.-h. a. K. N. Wang, “Medical image enhancement algorithm based on NSCT and the improved fuzzy contrast,” Int. J. Imaging Syst. Technol., vol. 25, pp. 7-14. https://doi.org/10.1002/ima.22115 2015.
[190] P.-H. G. N. Dinh, “A new medical image enhancement algorithm using adaptive parameters,” Int J Imaging Syst Technol. , pp. 1- 21, https://doi.org/10.1002/ima.22778 2022.
[191] S. H. M. Z. Y. C. J. a. B. U. Huang, “Medical image segmentation using deep learning with feature enhancement,” IET Image Process, vol. 14, pp. 3324-3332, https://doi.org/10.1049/iet-ipr.2019.0772 2020.
[192] K. M. N. M. a. B. P. K. Munadi, “Image Enhancement for Tuberculosis Detection Using Deep Learning,” IEEE Access, vol. 8, pp. 217897-217907.
[193] S. R. G. J. Kohli MD, “Medical Image Data and Datasets in the Era of Machine Learning—Whitepaper from the 2016 C-MIMI Meeting Dataset Session,” J Digit Imaging, pp. 392-399, PMID: 28516233; PMCID: PMC5537092. 2017.
[194] “Kaggle,” https://www.kaggle.com/general/168211, [Online]. Available: https://www.kaggle.com/general/168211.
[195] Z. L. a. X. Z. a. H. M. a. S. Zhang, “Large-scale retrieval for medical image analytics: A comprehensive review,” Medical Image Analysis, vol. 43, pp. 66-84, 2018.
[196] Z. a. Z. Y. a. P. Z. a. L. S. a. S. Y. a. M. D. N. a. Z. X. S. Yan, Bodypart recognition using multi-stage deep learning, New York, ACM: Springer, 2015, p. 449–61.
[197] J. a. L. H. a. A. R. P. Snoek, “Practical bayesian optimization of machine learning algorithms,” Advances in neural information processing systems, vol. 25, 2012.
[198] J. C. A. N. T. F. H. L. Jason Yosinski, “Understanding neural networks through deep visualization,” Computer Vision and Pattern Recognition, 22 06 2015.
[199] A. M. P. Y. A. T. J. T. K. S. X. B. T. P. C. P. P. B. W. &. P. A. Shekoofeh Azizi, “Transfer learning from rf to b-mode temporal enhanced ultrasound features for prostate cancer detection,” International Journal of Computer Assisted Radiology and Surgery, vol. 12, p. 1111–1121, 2017.
[200] v. G. B. K. N. d. H. A. Kooi T, “Discriminating solitary cysts from soft tissue lesions in mammography using a pre-trained deep convolutional neural network,” Med Phys., pp. 1017-1027, 2017.
[201] G. a. H. K. E. a. R. E. a. V. A. a. K. R. Currie, “Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging,” Journal of Medical Imaging and Radiation Sciences, vol. 50, no. 4, pp. 477-487, 12 2019.
[202] A. C. Q. J. S. L. A. H. Hosny A, “Artificial intelligence in radiology,” Nat Rev Cancer, vol. 8, pp. 500-510, 2018.
[203] B. P. a. P. M. S. a. M.-T. E. Constantinos, “Medical imaging fusion applications: An overview,” in Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat. No. 01CH37256), vol. 2, IEEE, 2001.
[204] C. R. a. S. A. a. S. W. a. G. L. J. a. M. J. a. S. S. Zamir, “Taskonomy: Disentangling task transfer learning,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712-3722, 2018.
[205] “What are the fundamental steps in Digital Image Processing?,” March 2013. [Online]. Available: https://legendtechz.blogspot.com/2013/03/2-what-are-fundamental-steps-in-digital.html.
[206] A. K. A. A. A. a. A. L. F. a. H. A. Kumar, Chapter 6 – ROI extraction in CT lung images of COVID-19 using Fast Fuzzy C means clustering, V. E. B. a. O. G. a. G. W. a. M. A. a. O. Postolache, Ed., https://doi.org/10.1016/B978-0-12-824473-9.00001-X: Academic Press, pp. 103-119.
[207] “www.javatpoint.com,” [Online]. Available: https://www.javatpoint.com/history-of-artificial-intelligence.
[208] N. K. C. F. B. E. E. A. B. O. D. E. K. Krishna Chaitanya, “Semi-supervised task-driven data augmentation for medical image segmentation,” Medical Image Analysis, vol. 68, no. 101934, https://doi.org/10.1016/j.media.2020.101934 2021.
[209] “deserno-medical-image-processing,” [Online].
[210] “www.v7labs.com,” [Online]. Available: https://www.v7labs.com/blog/medical-image-annotation-guide.
[211] “towardsdatascience.com,” [Online].
[212] A.P. P. R. S. a. J. Tian, “An image augmentation approach using the two-stage generative adversarial network for nuclei image segmentation,” Biomedical Signal Processing and Control, vol. 57, p. 101782.
[213] “www.geeksforgeeks.org,” [Online]. Available: https://www.geeksforgeeks.org/top-10-algorithms-every-machine-learning-engineer-should-know/.
[214] [“torchio,” https://torchio.readthedocs.io/datasets.html, [Online]. Available: https://torchio.readthedocs.io/datasets.html.
[215] “medical-imaging-datasets,” https://github.com/sfikas/medical-imaging-datasets, [Online]. Available: https://github.com/sfikas/medical-imaging-datasets.

 

Download Sample Pages

 

How to cite this Book: 

APA:
Mohankumar.S, Kavita Bhatt.,(2022). Medical Image Augmentation and Enhancement using Machine Learning and Deep Learning (1st ed., pp. 1-148). Jupiter Publications consortium,ISBN:978-93-91303-40-2, DOI: https://doi.org/10.47715/JPC.978-93-91303-40-2

Reviews

There are no reviews yet.

Be the first to review “Medical Image Augmentation and Enhancement using Machine Learning and Deep Learning”

Your email address will not be published. Required fields are marked *